Fulltext results:
- Heating load in Passive Houses
- a house with an average occupancy of 1 person per 30 m² of living area, the capacity available is arou... The minimum fresh air flow rate for one person is 30 m<sup>3</sup>/h (according to the DIN 1946 – heal... >K). Fresh air can only be heated by a maximum of 30 K (to 51°C) in order to avoid dust carbonisation ... capacity needed per person: \\ P<sub>pers</sub> = 30 m<sup>3</sup>/h/pers * 0.33 Wh/(m<sup>3</sup>K) *
- Adaptive versus Heat Balance Comfort Models @basics:building_physics_-_basics:thermal_comfort
- They resulted in the international standard ISO 7730 which allows for the calculation of the predicted mean vote, PMV. In [ISO 7730:2006] three comfort categories are distinguished,... rgy and Buildings 34, 6 (2002) 533-536 **[ISO 7730:2006]** DIN EN ISO 7730:2006-05, Ergonomie der thermischen Umgebung – Analytische Bestimmung und
- Thermal comfort parameters @basics:building_physics_-_basics:thermal_comfort
- orporated into international standards (DIN ISO 7730). A large part of the information available to us... explanation of Fangers comfort research and ISO 7730]] for those interested in the scientific backgrou... ermined by Fanger’s equation, documented in ISO 7730 (see also [[phi_publications:pb_25:comfort_criter... Calculation of the PMV according to DIN EN ISO 7730|Fangers comfort equation]]). Furthermore, accordi
- Local thermal comfort @basics:building_physics_-_basics:thermal_comfort
- :picopen:3warmfenster_thermographie_mit_logo.png?300 }}|{{ :picopen:2isolierglas_thermographie_mit_logo.png?300 }}|{{ :picopen:2waermeschutzglas_thermographie_m
- Heated basement @basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples
- 2d} = \dfrac{\dot{q}}{T_i-T_e} = \dfrac{38{,}123}{30} = 1{,}2708 \, \dfrac{\text{W}}{\text{m} \cdot \t... KW} = \dfrac{\dot{q}}{T_i-T_e} = \dfrac{22{,}190}{30} = 0{,}7397 \, \dfrac{\text{W}}{\text{m} \cdot \t... 2d} = \dfrac{\dot{q}}{T_i-T_e} = \dfrac{29{,}588}{30} = 0{,}9863 \, \dfrac{\text{W}}{\text{m} \cdot \t
- Exterior wall on floor slab @basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples
- _{2d} = \frac{\dot{q}}{T_i-T_e} = \frac{19{,}488}{30} = 0{,}6496 \, \frac{\text{W}}{\text{m} \cdot \te... _{BP} = \frac{\dot{q}}{T_i-T_e} = \frac{14{,}023}{30} = 0{,}4674 \, \frac{\text{W}}{\text{m} \cdot \te
- Unheated basement @basics:building_physics_-_basics:thermal_bridges:tbcalculation:examples
- c{\text{W}}{\text{m} \cdot \text{K}} \, - \, 1{.}830 \, \text{m} \, \cdot \, 0{.}120 \, \dfrac{\text{W... gn> $$ \large{\Psi_{exterior wall} = 0{.}231-1{.}830 \cdot 0{.}120 = 0{.}0114} $$ </WRAP> For the flo
- Heat transfer
- duction heat very well: aluminum in the range of 230 W/(mK) - almost 10 000 times that of the air. Ins
- What defines thermal bridge free design?
- lows. \\ [{{ :picopen:envelope_passive_house.png?300|Due to thermal bridge free design, the heat loss... WRAP> [{{ :picopen:waermebrueckenfrei_marker.png?300|Cross-section: Plan the insulation layer so that
- Thermal Bridges Catalogue @basics:building_physics_-_basics:thermal_bridges
- ol|here]]. {{:picopen:sinfonia_eu_phi.png?nolink&300}} ---- ===== See also ===== Click [[:planning